
ARx_Func3.ag

ARx_Func3.ag ii

COLLABORATORS

TITLE :

ARx_Func3.ag

ACTION NAME DATE SIGNATURE

WRITTEN BY February 7, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

ARx_Func3.ag iii

Contents

1 ARx_Func3.ag 1

1.1 " . 1

1.2 ARexxGuide | Functions reference (7 of 12) | FILE INPUT/OUTPUT . 1

1.3 ARexxGuide | Functions reference | File I/O (1 of 5) | OVERVIEW . 2

1.4 ARexxGuide | Functions reference | File I/O (2 of 5) | FILE NAMES . 4

1.5 ARexxGuide | Functions reference | File I/O (3 of 5) | OTHER DEVICES . 5

1.6 ARexxGuide | Functions reference | File I/O (4 of 5) | STANDARD I/O . 6

1.7 ARexxGuide | Functions reference | File I/O (5 of 5) | REXX I/O . 7

1.8 Using a `.’ as the first character in a symbol . 8

1.9 ARexxGuide | Functions reference | File I/O (1 of 9) | CLOSE . 8

1.10 ARexxGuide | Functions reference | File I/O (2 of 9) | EOF . 8

1.11 ARexxGuide | Functions reference | File I/O (3 of 9) | LINES . 9

1.12 ARexxGuide | Functions reference | File I/O (4 of 9) | OPEN . 9

1.13 ARexxGuide | Functions reference | File I/O (5 of 9) | READCH . 11

1.14 ARexxGuide | Functions reference | File I/O (6 of 9) | READLN . 12

1.15 ARexxGuide | Functions reference | File I/O (7 of 9) | SEEK . 12

1.16 ARexxGuide | Functions reference | File I/O (8 of 9) | WRITECH . 13

1.17 ARexxGuide | Functions reference | File I/O (9 of 9) | WRITELN . 14

1.18 ARexxGuide | Functions reference (9 of 12) | ARexx CONTROL . 14

1.19 ARexxGuide | Functions reference | ARexx control (1 of 17) | ADDRESS . 16

1.20 ARexxGuide | Functions reference | ARexx control (2 of 17) | ADDLIB . 16

1.21 ARexxGuide | Functions reference | ARexx control (3 of 17) | ARG . 18

1.22 ARexxGuide | Functions reference | ARexx control (4 of 17) | DATATYPE . 19

1.23 ARexxGuide | Functions reference | ARexx control | DATATYPE (1 of 1) | OPTIONS 19

1.24 ARexxGuide | Functions reference | ARexx control (5 of 17) | DELAY . 20

1.25 ARexxGuide | Functions reference | ARexx control (6 of 17) | ERRORTEXT 20

1.26 ARexxGuide | Functions reference | ARexx control (7 of 17) | DIGITS . 21

1.27 ARexxGuide | Functions reference | ARexx control (8 of 17) | FORM . 21

1.28 ARexxGuide | Functions reference | ARexx control (9 of 17) | FUZZ . 22

1.29 ARexxGuide | Functions reference | ARexx control (10 of 17) | GETCLIP . 22

ARx_Func3.ag iv

1.30 ARexxGuide | Functions reference | ARexx control (11 of 17) | PRAGMA . 22

1.31 ARexxGuide | Functions reference | ARexx control | PRAGMA (1 of 1) | OPTIONS 23

1.32 ARexxGuide | Functions reference | ARexx control (12 of 17) | REMLIB . 24

1.33 ARexxGuide | Functions reference | ARexx control (13 of 17) | SETCLIP . 25

1.34 ARexxGuide | Functions reference | ARexx control (14 of 17) | SOURCELINE 25

1.35 ARexxGuide | Functions reference | ARexx control (15 of 17) | SYMBOL . 26

1.36 ARexxGuide | Functions reference | ARexx control (16 of 17) | TRACE . 26

1.37 ARexxGuide | Functions reference | ARexx control (17 of 17) | VALUE . 27

ARx_Func3.ag 1 / 28

Chapter 1

ARx_Func3.ag

1.1 "

AN AMIGAGUIDE® TO ARexx Second edition (v2.0)
by Robin Evans

Note: This is a subsidiary file to ARexxGuide.guide. We recommend
using that file as the entry point to this and other parts of the
full guide.

Copyright © 1993,1994 Robin Evans. All rights reserved.

1.2 ARexxGuide | Functions reference (7 of 12) | FILE INPUT/OUTPUT

CLOSE
(<file>)

EOF
(<file>)

LINES
([{STDIN | STDOUT | STDERR}])

OPEN
(<file>, <filespec>, [<option>])

READCH
(<file>, [<length>])

READLN
(<file>)

SEEK
(<file>, <offset>, [<anchor>])

WRITECH

ARx_Func3.ag 2 / 28

(<file>,<string>)

WRITELN
(<file>,<string>)

Related function:
EXISTS

Also see File management functions
Informational functions

The functions in this list give to an ARexx script control over input and
output, not just to disk files, but also to console windows, printers, and
other devices that act much like standard files in the view of AmigaDOS.

The following nodes explain in more depth the use of I/O functions and
instructions in ARexx.

Overview of I/O functions

Setting the logical file name

Using I/O functions other devices

Standard I/O files
Compatibility issues:

ARexx file I/O function do not follow the REXX standard. The function
names are different. They work differently than standard functions.

Standard REXX I/O
Next: File mgt. func. | Prev: Information func. | Contents: ←↩

Function ref.

1.3 ARexxGuide | Functions reference | File I/O (1 of 5) | OVERVIEW

Overview of file I/O functions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The most basic of the file I/O functions is
OPEN()

, which gives the
opened file a ‘logical name’ that the other functions like READLN(),
WRITECH(), and SEEK() will then use when acting on that file. The logical
name used with the OPEN() function can be any literal string or
symbol . The name has significance only for the current script.

The input functions are
READLN()

, which reads characters from the
specified file until an ASCII 10 end-of-line character is encountered, and

READCH()
, which reads one character by default but can be made to read a



ARx_Func3.ag 3 / 28

specified number of characters.

The complimentary output functions are
WRITELN()

, which adds a specified
string to a file and appends an end-of-line (EOL) character to the string,
and

WRITECH()
, which adds characters to the file without adding the EOL

character.

The
EOF()
function returns a Boolean flag of 1 (TRUE) when the end of a

file has been reached. The
SEEK()
function moves to a specified point

within the file.

As information is read from or written to a disk file, ARexx (through
AmigaDOS) keeps track of the current position within the file with what is
called a file pointer. When a file is first opened, the initial position
of the pointer is determined by the <mode> argument in OPEN(<handle>,
<file name>, <mode>).

The <mode> may be:

R for read (the default -- used when nothing else is specified),
Opens an existing file.
File pointer is at the beginning of the file.

A for append
Opens an existing file.
File pointer is at the end of the file.

W for write.
Creates a new file or truncates an existing file of the same name.
File pointer is at the beginning of the file.

The OPEN() function will fail and return a value of 0 if a ’R’ or ’A’ mode
is specified for a file that does not yet exist. If the ’W’ mode is
specified, any existing file of the same name will be truncated (deleted)
without warning.

The mode used to open a file does not affect the other I/O functions. It
is possible to read from a file opened in ’W’ or ’A’ mode and it is
possible to write to a file opened in ’R’ mode. Unless

SEEK()
is used to

reposition the pointer, however, there will be nothing to read when the
file pointer is located at the end of a file as it is in ’A’ and ’W’
modes. Writing to an existing file with the pointer located at its
beginning will overwrite existing data.

The
SEEK()
function performs two tasks: it returns the current byte

position within a file and may be used to move the file pointer to a new
location. Because the AmigaDOS file system is byte-oriented rather than



ARx_Func3.ag 4 / 28

line-oriented, there is no simple way to move to the beginning of a new
line unless the lines are all of the same length.

AmigaDOS allows for different levels of access protection for opened
files. ARexx uses two of those levels. Files opened in write mode are
given an exclusive lock: until it is closed, the file cannot be accessed
except through use of its ARexx handle by the script that opened the file.
Files opened in the other modes are given a non-exclusive lock: not only
may other processes have access to the file, but the same file can be the
subject of multiple OPEN() statements.

Next: LOGICAL FILE NAMES | Prev: File I/O | Contents: File I/O

1.4 ARexxGuide | Functions reference | File I/O (2 of 5) | FILE NAMES

Naming logical files
~~~~~~~~~~~~~~~~~~~~

When a file or other device is opened using the
OPEN()
function, it is

given a logical name. In the original manual to ARexx, Bill Hawes uses a
string for the logical name:

say open(’outfile’, ’ram:temp’, ’W’)

Using a literal string makes it apparent that no assignment takes place in
the function. ’outfile’ is simply a name used to refer to the file. It
isn’t assigned an address or anything else.

The problem with this usage is that the name becomes case sensitive. The
following will generate an error:

call writeln(’Outfile’, String)

’Outfile’ and ’outfile’ are not the same name because of the difference in
letter-case. Such a subtle difference might give rise to what Cowlishaw
calls a "high astonishment factor." He notes, "If a feature, accidentally
misused, gives apparently unpredictable results, then it has a high
astonishment factor and is therefore undesirable."

That’s a good test for each programmer of the best method to use when
naming files. If a using a literal string often gives rise to errors, then
it is probably better to avoid the usage.

Fortunately, REXX is a language designed to be adaptable to different
styles, but most of all it is a language designed to use something as
close as possible to a natural English-like style.

Any valid symbol can be used as the logical name. Entering the names
without quotation marks -- as simple symbols -- means that the name will
be treated as upper-case by ARexx no matter how it is written. The
disadvantage of this construction is that the name could be used later in
a variable assignment , which would change its value and make it no
longer the same name for the purposes of the file I/O functions -- another

ARx_Func3.ag 5 / 28

astonishing situation.

There is an interesting third alternative to using a literal (quoted)
string or a variable symbol; an alternative which, like using a literal
string, prevents the accidental assignment of a new value to <name>, but
which also -- like the use a simple symbol -- preserves the general case
insensitivity of REXX statements. The third alternative? Use a
constant symbol for the name.

Unlike the symbols used for variables, constants cannot be assigned a
value. There’s no danger of accidentally using the symbol for something
else. Constants are usually numbers (567.43 is a constant symbol, for
instance), but they don’t have to be. Any token beginning with a digit is
considered a constant, so a symbol like ‘6Input’ can be used as <name> in
the OPEN() function. The name will be case insensitive since ARexx will
translate it each time to uppercase. (A period can also be used as the
first character in a constant symbol, but the ANSI REXX committee has
recommended against using that feature since it might be made invalid by
future extensions to the language.)

An assigned variable may also be used as the file <name>. In that case,
the logical name of the file is the value of the variable and not the name
of the variable. There are times (opening multiple files in a loop, for
example) when it is far more elegant to use a variable.

This will write a line to the file ’t:vartest’:

/**/
LFname = ’TFile’

/* the variable’s name can be written in any mixture of U&lc */
if open(LFName, ’t:vartest’, ’W’) then

/* ’TFile’ is now the logical name of the file */
call writeln(’TFile’, ’See, it works with a variable.’)

call close LFName

Next: NON-FILE DEVICES | Prev: Overview | Contents: File I/O

1.5 ARexxGuide | Functions reference | File I/O (3 of 5) | OTHER DEVICES

Using I/O functions with other devices
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The Amiga operating system makes the file I/O functions even more useful
because it extends the concept of ‘file’ to cover a range of devices
including text windows and printers. Because the OS is able to treat a
printer as a file-like device, ARexx can send output to a printer using a
simple variation of the file I/O functions: The device ’PRT:’ may be
specified as the file name in the OPEN() function:

/**/
if open(Printer, ’prt:’, ’W’) then do

call writeln(Printer, ’Hello world’)
end

(The READLN() input function cannot be used when communicating with the



ARx_Func3.ag 6 / 28

PRT: printer device.)

Using the operating system’s console device , a window can be opened and
treated in much the same way as a disk file:

/**/
if open(OutWin, "con:8/8/272/88/Output Window", W) then do

call writeln(OutWin, ’Hello there, you big bad world.’)
call delay 500
call close OutWin

end

Even the input functions READLN() and READCH() can be used with the
console device and will act much like the instruction PARSE PULL does on
the standard input window.

Next: STANDARD I/O FILES | Prev: Logical file name | Contents: File I/O

1.6 ARexxGuide | Functions reference | File I/O (4 of 5) | STANDARD I/O

Standard input/output files: STDOUT, STDIN, STDERR
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The function SHOW(’F’) will return the names of all currently open
logical files. The logical name of any file added with OPEN() will appear
on the list. In virtually all cases, the returned list will also contain
the names of at least two files that were not explicitly opened in the
script: STDIN and STDOUT are logical files that are available by default
to all scripts. The names refer to the standard input and output devices.

The instructions SAY and PARSE PULL are closely related to the
functions

WRITELN()
and
READLN()

. SAY and PULL output and retrieve
items from a defined logical file, except that the file used by the
instructions need not be opened.

SAY outputs a specified string to STDOUT, making it a simpler variation of
the clause ‘call writeln(STDOUT, <string>)’. In the same way, PULL
retrieves its input from the STDIN device much like ‘Input =
readln(STDIN)’. The instruction PARSE EXTERNAL also retrieves output
from a logical file, one named STDERR , that is normally available only
when the trace console is open.

The STDIN and STDOUT files can be redirected to other devices using a
standard AmigaDOS facility: When a command is followed by the character
‘<’, STDIN -- the standard input device -- is redirected to the device
specified after that character. Similarly, the ‘>’ redirects standard
output or STDOUT to a specified device.

The interactive example uses the following simple script to demonstrate
the effect of redirection.

/**/

ARx_Func3.ag 7 / 28

options prompt "0a"x||"Enter any text then press <Enter>: "
pull T$
say T$

Interactive example: Standard I/O demonstration *

Redirection is often used on the Amiga to suppress output by setting up a
dummy device called ‘nil:’ as the destination and source for a command.
When the output of an ARexx program is redirected with the ‘>NIL:’ option,
the instruction SAY will have no effect. Its output will disappear.
Similarly, the instruction PULL will return with an empty string when
input is redirected to nil: with ‘<NIL:’.

Also see: SIGNAL ON SYNTAX

Technique note: Open custom console windows
Format() user function

Next: File I/O | Prev: Non-file devices | Contents: File I/O

1.7 ARexxGuide | Functions reference | File I/O (5 of 5) | REXX I/O

Standard REXX I/O functions
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Because of the unique characteristics of file I/O methods on different
systems, implementations of REXX exhibit significant differences in file
I/O methods. Despite the differences, most implementations other than
ARexx use the following functions that are defined in TRL2 :

CHARIN(<stream> [,<position> <,count>]) - read characters
CHAROUT(<stream> [,<string> <,position> ] - write characters
LINEIN(<stream> [,<line> <,count>]) - read a line
LINEOUT(<stream> [,<string> <,line>]) - write a line
STREAM(<stream> [,<option> <,command>]) - misc. stream operations

There is no OPEN() function in the standard because <stream> is taken to
be actual name of the character stream (a filename, for instance). The
STREAM() function is defined to allow for implementation-specific commands
that can retrieve information about a stream or invoke system-specific
commands for the stream. It is sometimes used to assign a logical name to
a stream.

The standard functions listed above could be duplicated in ARexx within a
subroutines that issued used the

OPEN()
function behind the scenes to

set up an ARexx
file handle

.



ARx_Func3.ag 8 / 28

1.8 Using a `.’ as the first character in a symbol

Compatibility issues:
The ANSI committee that is working on a standardized definition of REXX
has recommended against use of "." as the first character in a non-
numeric symbol . Although ARexx may not be changed to meet the ANSI
definitions, users might want to avoid use of this kind of construction
to maintain greater compatibility with other versions of REXX.

1.9 ARexxGuide | Functions reference | File I/O (1 of 9) | CLOSE

rv = CLOSE(<file>)
rv is a Boolean value

Closes the specified <file>. 0 will be returned if the file had not been
opened previously.

<file> is the logical name assigned to the file with the OPEN() function.
The name is case-sensitive, although an unassigned symbol may be used, in
which case, it will be automatically translated to upper-case by ARexx and
can therefore be entered in mixed case here.

NOTE: ARexx automatically closes all opened files when a program
ends -- even if it ends with some type of external interrupt -- so
an error will not be generated if files are not explicitly closed
with this function.

Also see
OPEN
Compatibility issues:

All file I/O function in ARexx are system-specific.

Next: EOF() | Prev: File I/O func. | Contents: File I/O func.

1.10 ARexxGuide | Functions reference | File I/O (2 of 9) | EOF

rv = EOF(<file>)
rv is a Boolean value

The result is FALSE (0) until the end of the specified <file> has been
reached.

Also see
READLN

READCH

SEEK
Example:

do until EOF(’AFile’)



ARx_Func3.ag 9 / 28

...
end

Technique note: Read one file, write to another
Getting output from a command

Compatibility issues:
All file I/O function in ARexx are system-specific.

Next: LINES() | Prev: CLOSE() | Contents: File I/O func.

1.11 ARexxGuide | Functions reference | File I/O (3 of 9) | LINES

rv = LINES([{STDIN | STDOUT | STDERR}])
rv is a number

The result is the number of lines queued or typed ahead at the logical
device specified by the argument string, which must refer to an
interactive stream.

If the argument string is omitted, the result is the number of lines on
the program stack of STDIN .

NOTE: This function requires the 2.0+ AmigaShell, WShell , or
another shell managed by ConMan.

Example:
/**/
push ’cd sys:’
queue ’run program’
say lines() >>> 2

Also see PUSH instruction
QUEUE instruction
PULL instruction

Technique note: Data scratchpad with PUSH & QUEUE

Compatibility issues:
As defined in TRL2 , this function should return the number of lines
remaining in any character input stream -- files as well as consoles. It
has more limited utility in ARexx.

Next: OPEN() | Prev: EOF() | Contents: File I/O func.

1.12 ARexxGuide | Functions reference | File I/O (4 of 9) | OPEN

rv = OPEN(<file>, <filespec>, [<option>])
rv is a Boolean value

Opens a file with the name specified by <filespec>.



ARx_Func3.ag 10 / 28

<file> is a logical name that will be used by other functions that
communicate with the channel. It may be any expression -- most often a
literal string, unassigned symbol, or variable name. The result of the
expression is used as the logical name, which is case-sensitive.

More information:
Naming logical files

<filespec> may be any valid device or filename. ’PRT:’ may be used ←↩
as

<filespec> to allow output to a printer.

The <option> (which is READ by default) determines the mode in which the
file is opened. Only the first character { A|R|W } need be used to specify
the <option>.

’APPEND’ -- An existing file will be opened for input with the pointer
located at the end. Although it is usually used to add more
information to an existing file, the read functions are still
available when a file is opened in this manner. This option
establishes a non-exclusive lock on the file.

’READ’ -- An existing file will be opened with the pointer located
at the beginning of the file. Although it is usually used to
read information from an existing file, the write functions
are still available when a file is opened with this option.
This option establishes a non-exclusive lock on the file.

’WRITE’ -- A new file will be opened for input. If a file of the same
name exists, it will be replaced by the new file. Although it
is usually used to add information to a new file, the read
functions are still available when a file is opened with this
option. This option establishes a exclusive lock on the file.

Because OPEN() returns a Boolean value , it is often used in an IF
instruction which allows for handling error conditions arising from
failure to open the specified file.

Examples:
/* create a new file */

if open(’AFile’, ’t:Information.data’, ’W’) then ...
/* open a channel to the printer */

if open(’PRINTER’, ’PRT:’, ’W’) then ...
/* if [WinSpec] contains valid CON: specs, this will open **
** a console window */

if open(.Win, WinSpec, ’W’) then ...
/* open an existing file for more data */

if open(OldFile, FileName, ’A’) then ...
/* open an existing file for reading data */

if open(.IFile, FileName, ’R’) then ...

Also see
CLOSE

READLN

READCH

WRITELN



ARx_Func3.ag 11 / 28

WRITECH
SIGNAL ON IOERR

Technique note: Open custom console windows
CountWords() user function
Read single record in data file
Output text to printer
Read one file, write to another
Using the clip list
Data scratchpad with PUSH & QUEUE
Get/set environmental variables
Getting output from a command

Compatibility issues:
All file I/O function in ARexx are system-specific.

Next: READCH() | Prev: LINES() | Contents: File I/O func.

1.13 ARexxGuide | Functions reference | File I/O (5 of 9) | READCH

rv = READCH(<file>, [<length>])
rv is a string

Returns the number of characters specified by <length> (the default is 1)
from the logical <file>, which must have been opened with a prior call to

OPEN()
.

<file> is the
logical name
assigned to the file with the OPEN() function.

The function will read a maximum of 65535 characters from the file.
Specifying a longer <length> will not cause an error, but also will not
return more than the 65535 characters.

Example:
Chars = readch(’AFile’, 6) /* will read the next 6 characters */
File = readch(’AFile’, 65535) /* Will read entire file _or_ the **

** first 64k bytes of it. */

Also see
READLN

WRITECH
Technique note: Read single record from data ←↩

file
Open custom console windows

Compatibility issues:
All file I/O function in ARexx are system-specific.

Next: READLN() | Prev: OPEN() | Contents: File I/O func.



ARx_Func3.ag 12 / 28

1.14 ARexxGuide | Functions reference | File I/O (6 of 9) | READLN

rv = READLN(<file>)
rv is a string

Returns a string of characters from the logical <file> which must have
been opened with a prior call to

OPEN()
The function will read

characters from <file> until it encounters a line-feed character, which
will not be included in the returned value.

<file> is the
logical name
assigned to the file with the OPEN() function.

The maximum length of the value returned by READLN() is 1000 bytes. If
line-feed characters are not used in a file, then multiple calls to
READLN() would return the contents of the file in 1000-character chunks.

Example:
ThisLine = readln(’MyFile’)

Also see
READCH

WRITELN
Technique note: CountWords() user function
Read one file, write to another
Get/set environmental variables
Getting output from a command

Compatibility issues:
All file I/O function in ARexx are system-specific.

Next: SEEK() | Prev: READCH() | Contents: File I/O func.

1.15 ARexxGuide | Functions reference | File I/O (7 of 9) | SEEK

rv = SEEK(<file>, <offset>, [<anchor>])
rv is a number

Moves the pointer <offset> number of bytes from the <anchor> to a new
position in the logical <file>. The <anchor> may be ’BEGIN’, ’CURRENT’, or
’END’. (Only the first character need be used.) The default <anchor> of
’C’ will be used if nothing else is specified.

If ’E’ is the anchor, then <offset> should be a negative number to move
the pointer backwards by <offset> bytes.



ARx_Func3.ag 13 / 28

The result is the new byte position relative to the beginning of the file.

<file> is the
logical name
assigned to the file with the OPEN() function.

Example:
PartOfLine = readch(’AFile’, 6)

Also see
OPEN

READCH

READLN

EOF
Technique note: Read single record from data ←↩

file

Compatibility issues:
All file I/O function in ARexx are system-specific.

Next: WRITECH() | Prev: READLN() | Contents: File I/O func.

1.16 ARexxGuide | Functions reference | File I/O (8 of 9) | WRITECH

rv = WRITECH(<file>,<string>)
rv is a number

Writes the character(s) in <string> to the logical <file>, which must have
been opened with a prior call to

OPEN()
.

This function will not append a newline character to <string>.

<file> is the
logical name
assigned to the file with the OPEN() function.

The return value from the function is a count of the characters written to
the file. If the function was successful, the number returned will be
equal to the length of <string>. Any other return indicates failure.

Also see
WRITELN

READLN

SEEK
Technique note: Output text to printer



ARx_Func3.ag 14 / 28

Get/set environmental variables

Compatibility issues:
All file I/O function in ARexx are system-specific.

Next: WRITELN() | Prev: SEEK() | Contents: File I/O func.

1.17 ARexxGuide | Functions reference | File I/O (9 of 9) | WRITELN

rv = WRITELN(<file>,<string>)
rv is a number

Writes <string> to the logical <file>, which must have been opened with a
prior call to

OPEN()
The function appends a line-feed

character to the string.

<file> is the
logical name
assigned to the file with the OPEN() function.

The return value from the function is a count of the characters written to
the file. If the function was successful, the number will be one more than
the length of <string> since the function counts the new-line character
that it adds. Any other return indicates failure.

Example:
call writeln(’AFile’, ’This will be sent to file opened as AFile’)

Also see
WRITECH

READLN

SEEK

EOF
Technique note: Read one file, write to another
Using the clip list

Compatibility issues:
All file I/O function in ARexx are system-specific.

Next: File I/O func. | Prev: WRITECH() | Contents: File I/O func.

1.18 ARexxGuide | Functions reference (9 of 12) | ARexx CONTROL

ADDRESS



ARx_Func3.ag 15 / 28

()

ADDLIB
(<name>, <priority>, [offset, version])

ARG
([<argnumber>], [’EXISTS’ | ’OMITTED’])

DATATYPE
(<string>, [<type>])

DELAY
(<number>)

DIGITS
()

ERRORTEXT
(<number>)

FORM
()

FUZZ
()

GETCLIP
(<name>)

PRAGMA
(<option> [,<value>])

REMLIB
(<libname>)

SETCLIP
(<clipname>, [<value>])

SOURCELINE
([<line number>])

SYMBOL
(<name>)

TRACE
([<option>])

VALUE
(<name>)

Also see Message port functions

This list includes a variety of functions that give the programmer control
over the script itself. Some of the functions, like TRACE(), SOURCELINE(),
and ERRORTEXT() will be useful mainly for debugging a program under
development. The two clip functions let one ARexx script set up variables
that can be read by any other script. VALUE() extends the naming and



ARx_Func3.ag 16 / 28

referencing power of variable symbols while SYMBOL() and DATATYPE() allow
for greater control over the typeless variables in ARexx.

ADDLIB() is an Amiga extensions to the standard language definition that
give ARexx access to the power of external libraries .

ADDRESS() returns information about the effect of the instruction with the
same name just as DIGITS(), FUZZ(), and FORM() reveal the settings of the
instruction NUMERIC .

Finally, the ARG() function can replace, in some instances, use of the
ARG instruction.

Next: Port mgt. func. | Prev: File mgt. func. | Contents: Function ref.

1.19 ARexxGuide | Functions reference | ARexx control (1 of 17) | ADDRESS

rv = ADDRESS()
rv is a string

The result is the name of the ARexx port to which commands are currently
being submitted.

Examples:
say address(); >>> WSH_4
say address(); >>> TURBOTEXT2

Also see ADDRESS instruction
PARSE SOURCE instruction
Current host Basic elements explanation

Next: ADDLIB() | Prev: ARexx control func. | Contents: ARexx control func.

1.20 ARexxGuide | Functions reference | ARexx control (2 of 17) | ADDLIB

rv = ADDLIB(<name>, <priority>, [<offset>], [<version>])
rv is a Boolean value

Adds a function library or function host to the Library List maintained
by the resident process.

The <name> argument is case sensitive: "REXXSupport.Library" is not the
same thing as "rexxsupport.library". Library names are usually written in
lowercase, but there are some exceptions. Be careful to use the correct
case; otherwise the desired functions will not be made available to ARexx.
Be careful also to enclose the library name in quotation marks. ARexx
converts symbols to uppercase if they are not quoted. Such a shift would
cause the wrong name to be sent to the function.

Unless an explicit path is specified in the argument string, ARexx will
look for the library when needed in the system libs: directory.



ARx_Func3.ag 17 / 28

<priority> is an integer between -100 and 100. It may be chosen by the
user and controls the order in which ARexx will search for a function-name
match within the libraries. A library with a higher priority number will
be searched before other libraries.

When a function is called and several entries are included on the
Library List, ARexx passes the function name to each of the libraries
in turn. A library will send a code back to ARexx indicating whether a
match was made. This takes some time, so it may be desirable to assure
that a frequently-used library is searched early.

If several libraries are added to the list with the same priority,
ARexx will search them in the order they were added.

The <offset> number for a library must be specified by the library’s
developer. For rexxsupport.library and most of the other packages released
so far, the number is -30.

The <version> number is often specified as 0, which tells ARexx to load
any library with the specified name. If a minimum version number is
required, then the integer part only of the verion may be specified in
this argument. ARexx will not add the name to its list if the available
library has a version number less than that specified here.

Examples:
call addlib(’rexxsupport.library’,0,-30,0)
call addlib(’rexxmathlib.library’,0,-30,0)
call addlib(’rexxarplib.library’,0,-30,0)

/* the following adds function host program */
if ~show(’p’,’QuickSortPort’) then
address command
do

’run >nil: quicksort’
do for 5 while ~show(’p’,’QuickSortPort’)

’ WaitForPort "QuickSortPort" ’
end
if show(’p’,’QuickSortPort’) then

call addlib(’QuickSortPort’,-30)
end

Also see
REMLIB

RXLIB command
Library functions Basic Elements explanation

The library named as an argument to this function is not actually loaded.
ARexx doesn’t even check to see if the library exists. The library is
actually loaded only when ARexx needs it to find an unmatched function
call. Specifying a non-existent library with this function may cause a
syntax error much later:

+++ Error 14 in line <#>: Requested library not found

Line <#> will indicate a line containing a function call. Using an invalid
library name with ADDLIB() can cause valid function names to be
unrecognized because ARexx might check for the function first within the



ARx_Func3.ag 18 / 28

invalid library.

Compatibility issues:
This function is system-specific to ARexx. Other implementations offer
similar but differently-named functions to load external libraries.
TRL2 does not define a standard function for the task.

In OS/2 REXX the function RxFuncAdd() performs a similar task.

Next: ARG() | Prev: ADDRESS() | Contents: ARexx control func.

1.21 ARexxGuide | Functions reference | ARexx control (3 of 17) | ARG

rv = ARG([<argnumber>], [’EXISTS’ | ’OMITTED’])
rv is a number

or a string
or a Boolean value

Without arguments ARG() returns the number of arguments supplied when the
current program or function was executed.

If only <argnumber> is specified, then the argument string in that
position is returned or a null string if the argument was not supplied.

The ’EXISTS’ and ’OMITTED’ options (for which only the first letter
need be used) test whether the specified <argnumber> was used and return
Boolean value .

If the script was started as a command from the shell (usually with the
RX command), then all arguments are treated as a single string, even if

the string contains commas. Multiple argument strings are available only
for subroutines called as internal functions or scripts called as
external functions .

Examples:
assume the program was started from a shell with:
prg Foo, Widget

say arg(); >>> 1
say arg(1); >>> Foo, Widget
say arg(2,E); >>> 0

assume this call to an internal or external routine:
call prg ’Foo’,, ’Widget’

say arg(); >>> 3
say arg(1); >>> Foo
arg(2,E); >>> 0
say arg(3); >>> Widget

Also see PARSE ARG instruction

Technique note: CountChar() user function
CountWords() user function
Extract file name from full spec
Get/set environmental variables



ARx_Func3.ag 19 / 28

Next: DATATYPE() | Prev: ADDLIB() | Contents: ARexx control func.

1.22 ARexxGuide | Functions reference | ARexx control (4 of 17) | DATATYPE

rv = DATATYPE(<string>, [<type>])
rv is either ’NUM’ or ’CHAR’

or a Boolean value

If only <string> is specified, ’NUM’ will be returned if <string> is a
valid REXX number in any format or ’CHAR’ for any other input.

When a
<type>
(A|B|L|M|N|S|U|W|X) is specified, the result

is a Boolean value indicating whether the supplied <string> is a valid
value of that type.

Examples:
say datatype(A) >>> CHAR
A = 1; say datatype(A) >>> NUM
A = ’Molloy’; say datatype(A) >>> CHAR
A = ’Molloy’;say datatype(A, M) >>> 1

Also see VERIFY
ABS
SIGN

SYMBOL
Technique note: Checking for unique datatypes
Format() user function

Next: DELAY() | Prev: ARG() | Contents: ARexx control func.

1.23 ARexxGuide | Functions reference | ARexx control | DATATYPE (1 of 1) | OP-
TIONS

Only the first letter of the following option keywords need be ←↩
used with

the
DATATYPE()
function.

Keywords Accepted Values which yield TRUE result
----------------- ------------------------------
Numeric Valid number
Whole Integer
X Hex digits/alpha string
Binary Binary digits string
Alphanumeric A-Z,a-z, or digits 0-9
Upper Uppercase alphabetic A-Z



ARx_Func3.ag 20 / 28

Lowercase Lowercase alphabetic a-z
Mixed Mixed alphabetic A-Z,a-z
Symbol Valid REXX symbol

Samples:

Function Result Comment
------------------------- ------ ----------------------------------
datatype(45.78, ’n’) 1
datatype(3.32e9, ’n’) 1 Exponential notation is recognized.
datatype(45.78, ’w’) 0
datatype(1011,’b’) 1
datatype(’A43BD’, ’x’) 1
datatype(’A43BD’, ’a’) 1
datatype(’Amiga’,’a’) 1
datatype(333,’a’) 1
datatype(33.1,’a’) 0 The ’.’ is not alphanumeric.
datatype(’molloy’, ’u’) 0
datatype(’Amiga’, ’l’) 0
datatype(’unnamable’, ’l’) 1
datatype(’Amiga’, ’m’) 1
datatype(’Yeltzin’, ’s’) 1
datatype(’Ram:’, ’s’) 0 ’:’ is not valid in symbols

Next: DATATYPE() | Prev: DATATYPE() | Contents: DATATYPE()

1.24 ARexxGuide | Functions reference | ARexx control (5 of 17) | DELAY

a rexxsupport.library function
rv = DELAY(<number>)

rv is insignificant

Waits for the specified <number> of ticks (1/50 second) and then returns.

This function should be used rather than a busy-loop when an ARexx program
must be suspended for a set period. DELAY() frees the computer to execute
other tasks while the program is waiting.

Example:
call delay(100) >>> (2 seconds)

Also see TIME

Compatibility issues:
All support functions are system specific.

Next: ERRORTEXT() | Prev: DATATYPE() | Contents: ARexx control func.

1.25 ARexxGuide | Functions reference | ARexx control (6 of 17) | ERRORTEXT



ARx_Func3.ag 21 / 28

rv = ERRORTEXT(<number>)
rv is a string

The result is the error text associated with ARexx error <number>, or a
null string if nothing is defined for that number.

Example:
say errortext(5); >>> Unmatched quote

Also see
SOURCELINE

Next: DIGITS() | Prev: DELAY() | Contents: ARexx control func.

1.26 ARexxGuide | Functions reference | ARexx control (7 of 17) | DIGITS

rv = DIGITS()
rv is a number

The result is the current NUMERIC DIGITS setting.

Example:
numeric digits 6
say digits() ==> 6

Also see
FORM

FUZZ
PARSE NUMERIC

Next: FORM() | Prev: ERRORTEXT() | Contents: ARexx control func.

1.27 ARexxGuide | Functions reference | ARexx control (8 of 17) | FORM

rv = FORM()
rv is a string

The result is the current setting of the NUMERIC FORM instruction.

Also see
DIGITS

FUZZ
PARSE NUMERIC

Next: FUZZ() | Prev: DIGITS() | Contents: ARexx control func.



ARx_Func3.ag 22 / 28

1.28 ARexxGuide | Functions reference | ARexx control (9 of 17) | FUZZ

rv = FUZZ()
rv is a number

The result is the current NUMERIC FUZZ setting.

Example:
numeric fuzz 3
say fuzz() >>> 3

Also see
DIGITS

FORM
PARSE FUZZ

Next: GETCLIP() | Prev: FORM() | Contents: ARexx control func.

1.29 ARexxGuide | Functions reference | ARexx control (10 of 17) | GETCLIP

rv = GETCLIP(<clipname>)
rv is a string

Returns the value associated with clip <clipname>. The search for the
name in the clip list is case sensitive. A null string is returned if a
clip of the specified name is not found.

Example:
say setclip(’Molloy’,’Samuel Beckett’); >>> 1
say getclip(’Molloy’); >>> Samuel Beckett

/* The following has no result because the clip name is **
** case-sensitive. Leaving out the quotes converts the **
** name to uppercase */

say getclip(Molloy); >>>

Also see
SETCLIP

Technique note: Using the clip list

Compatibility issues:
This function is an ARexx extension that is not supported and not
duplicated in the standard language definition.

Next: PRAGMA() | Prev: FUZZ() | Contents: ARexx control func.

1.30 ARexxGuide | Functions reference | ARexx control (11 of 17) | PRAGMA

rv = PRAGMA(<option> [,<value>])
rv is a string



ARx_Func3.ag 23 / 28

or a Boolean value

Changes, or returns information about aspects of the system environment.
The

<option>
argument specifies the environmental attribute. A specific

<value> is expected for each type of <option>.

Also see SHOWLIST

Compatibility issues:
This function is an ARexx extension that is not supported and not
duplicated in the standard language definition.

Next: REMLIB() | Prev: GETCLIP() | Contents: ARexx control func.

1.31 ARexxGuide | Functions reference | ARexx control | PRAGMA (1 of 1) | OP-
TIONS

These are the options that are available with PRAGMA(). Only the first
letter of the option is needed.

Option Value Explanation
--------- ---------- -----------------------------------------
Directory [<dir>] If <dir> is specified, the ’current’

directory for the running ARexx program is
changed. (This does not affect the current
directory of the host.)

PRAGMA(D) without a <value> returns the
name of the current directory.

ID Returns a hexadecimal string which is the task
ID for the currently executing script. If
several copies of the same script are running at
once, this number can be used to distinguish
them. It might be useful when setting the name
of a port to be used with the OPENPORT()
function.

Priority [<number>] Controls the system priority of the currently
executing script, much like the AmigaDOS
command SETPRI.

If <number> is omitted, the function returns the
current priority setting.

If <number> is included, the priority will be
changed to that value. The number of the
previous priority will be returned.

<number> may be between -127 and 127, but should



ARx_Func3.ag 24 / 28

be restricted to a far more limited range and
should never be greater than the priority of
the resident process (which usually runs at 4).

Stack [<number>] sets the stack size for a program launched by
the current script and returns the stack size
previously set.

If <number> is omitted, the function will
return the size of the current stack.

* [<name>] defines the specified logical name as the
current ("*") console handler, thereby
allowing the user to open two streams on
one window. This option appears to be unneeded
on most current shells.

Window [{’N’| ’W’}] Controls the display of system requesters
(like ’Please insert volume...’). If the ’N’

or ’Null’ option is used, the requesters won’t
appear at all. The ’W’ or ’Workbench’ option is
the default. It causes the requesters to be
displayed on the Workbench screen and can also
be called by using PRAGMA(’W’) without a second
option.

Next, Prev & Contents: PRAGMA()

1.32 ARexxGuide | Functions reference | ARexx control (12 of 17) | REMLIB

rv = REMLIB(<libname>)
rv is a Boolean value

Removes <libname> -- the name of a library or function host -- from the
list maintained by the resident process. The library is not actually
removed from memory, but will no longer be available to ARexx scripts and
may be purged by the system when it needs the memory.

The function is useful when the name of a non-existent library was used
with the ADDLIB() function. Keeping such a name on the library list may
cause ARexx to search for the library each time a function is called and,
in some circumstances, will prevent a function that is present from being
found. This function will remove the name from the list.

Also see
ADDLIB
Compatibility issues:

This function is an ARexx extension that is not supported and not
duplicated in the standard language definition.

Next: SETCLIP() | Prev: PRAGMA() | Contents: ARexx control func.



ARx_Func3.ag 25 / 28

1.33 ARexxGuide | Functions reference | ARexx control (13 of 17) | SETCLIP

rv = SETCLIP(<clipname>, [<value>])()
rv is a Boolean value

Sets the <value> associated with <clipname> or deletes the named clip
if <value> is not specified. The search for <clipname> within the clip
list is case sensitive.

Example:
say setclip(’Molloy’,’Samuel Beckett’); >>> 1
say getclip(’Molloy’); >>> Samuel Beckett

Also see
GETCLIP

RXSET command

Technique note: Using the clip list

Compatibility issues:
This function is an ARexx extension that is not supported and not
duplicated in the standard language definition.

Next: SOURCELINE() | Prev: REMLIB() | Contents: ARexx control func.

1.34 ARexxGuide | Functions reference | ARexx control (14 of 17) | SOURCELINE

rv = SOURCELINE([<line number>])
rv is a string

or a number

The result is the text of the specified <line number> in the currently
executing ARexx program. If the line argument is omitted, the function
returns the total number of lines in the file.

This function is often used to embed "help" information in a program.

Examples:
/* A simple test program */
say sourceline() >>> 3
say sourceline(1) >>> /* A simple test program */

Technique note: Using in-line data

Also see
ERRORTEXT

SIGL Special variable: Basic elements ←↩
explanation

Next: SYMBOL() | Prev: SETCLIP() | Contents: ARexx control func.



ARx_Func3.ag 26 / 28

1.35 ARexxGuide | Functions reference | ARexx control (15 of 17) | SYMBOL

rv = SYMBOL(<name>)
rv is ’BAD’, ’VAR’, or ’LIT’

’BAD’ is returned if <name> is not a valid ARexx symbol. ’VAR’ indicates
that the <name> is an ARexx variable with an assigned value. ’LIT’
indicates that <name> is either a variable symbol that has not been
assigned a value or a constant .

Examples:
say symbol(’A’); >>> LIT
A = ’foo’;
say symbol(’A’); >>> VAR
say symbol(’A%’) >>> BAD

Also see
DATATYPE

ABS

Next: TRACE() | Prev: SOURCELINE() | Contents: ARexx control func.

1.36 ARexxGuide | Functions reference | ARexx control (16 of 17) | TRACE

rv = TRACE([<option>])
rv is a string

Returns a string that indicates the tracing option in effect when the
function was called. If <option> is used to set the tracing mode in the
same way as the TRACE instruction.

The <option> argument can be any expression that yields one of the
characters associated with the TRACE instruction. When an option is
specified, the result is the trace condition previously in effect, which
may be used to reset the tracing mode later in the program. ’N’ is returned
if the default tracing mode was used.

Unlike the trace instruction, this function will alter the trace mode from
within a program even if interactive tracing was started with the TS
command.

The ‘?’ and ‘!’ characters can be used alone { TRACE(’?’) } or with
any of the letter options { TRACE(’?R’) }. They act as toggles: Used once,
they turn the option on; used a second time, they turn it off

? is the toggle for interactive_tracing
! is the toggle for command_inhibition

Interactive example: Experiment with trace options *

Examples:
say trace() >>> N
trace ?I; say trace() >>> ?I



ARx_Func3.ag 27 / 28

say trace(off) >>> N

Also see Error codes

Tutorial Debugging a script

Next: VALUE() | Prev: SYMBOL() | Contents: ARexx control func.

1.37 ARexxGuide | Functions reference | ARexx control (17 of 17) | VALUE

rv = VALUE(<name>)
rv is a string

or a number

The result is the value of the ARexx symbol <name>. <name> can be any
expression that returns a valid symbol token .

Examples:
/* the same thing as SAY A */

A = ’foo’; say value(A) >>> foo
/* outputs value of VarMix */

VarMix = 4; Foo= ’Mix’; say value(’Var’Foo) >>> 4
/* outputs assignment to Sub since the value of Foo **
** is substituted, ’Sub’ and passed to SAY */

Sub = 8; Foo = ’Sub’; say value(Foo) >>> 8
/* A. is a different var than A so there’s no assignment */

foo.1 = 67; a = foo; say a.1 >>> A.1
/* the value of A is substituted. Output value of FOO.1 */

foo.1 = 67; A = ’foo’; say value(A’.1’) >>> 67

/**/
Name = ’Bob’; Bob=’Mary’; Mary=’Sarah’
say Name ’is married to’ value(name)
say ’His mother-in-law is’ value(value(name))

>>> Bob is married to Mary
>>> His mother-in-law is Sarah

Also see INTERPRET Instruction

Technique note: Interpreted variable names
Get/set environmental variables

Compatibility issues:
Two additional arguments not supported in ARexx are defined in TRL2 .
The syntax of the standard function is:

VALUE(<name>, [<newvalue>], [<selector>] )

If <newvalue> is specified, then that value is assigned to the variable
represented by the <name> expression. The third argument allows a
REXX program to access a variable from the environment specified by
<selector>.

In OS/2, for instance, <selector> can be used to set or retrieve the
value of an environmental variable:



ARx_Func3.ag 28 / 28

PathVar = value("MyPath",,"OS2ENVIRONMENT")

Next: ARexx control func. | Prev: TRACE() | Contents: ARexx control func.


	ARx_Func3.ag
	"
	ARexxGuide | Functions reference (7 of 12) | FILE INPUT/OUTPUT
	ARexxGuide | Functions reference | File I/O (1 of 5) | OVERVIEW
	ARexxGuide | Functions reference | File I/O (2 of 5) | FILE NAMES
	ARexxGuide | Functions reference | File I/O (3 of 5) | OTHER DEVICES
	ARexxGuide | Functions reference | File I/O (4 of 5) | STANDARD I/O
	ARexxGuide | Functions reference | File I/O (5 of 5) | REXX I/O
	Using a `.' as the first character in a symbol
	ARexxGuide | Functions reference | File I/O (1 of 9) | CLOSE
	ARexxGuide | Functions reference | File I/O (2 of 9) | EOF
	ARexxGuide | Functions reference | File I/O (3 of 9) | LINES
	ARexxGuide | Functions reference | File I/O (4 of 9) | OPEN
	ARexxGuide | Functions reference | File I/O (5 of 9) | READCH
	ARexxGuide | Functions reference | File I/O (6 of 9) | READLN
	ARexxGuide | Functions reference | File I/O (7 of 9) | SEEK
	ARexxGuide | Functions reference | File I/O (8 of 9) | WRITECH
	ARexxGuide | Functions reference | File I/O (9 of 9) | WRITELN
	ARexxGuide | Functions reference (9 of 12) | ARexx CONTROL
	ARexxGuide | Functions reference | ARexx control (1 of 17) | ADDRESS
	ARexxGuide | Functions reference | ARexx control (2 of 17) | ADDLIB
	ARexxGuide | Functions reference | ARexx control (3 of 17) | ARG
	ARexxGuide | Functions reference | ARexx control (4 of 17) | DATATYPE
	ARexxGuide | Functions reference | ARexx control | DATATYPE (1 of 1) | OPTIONS
	ARexxGuide | Functions reference | ARexx control (5 of 17) | DELAY
	ARexxGuide | Functions reference | ARexx control (6 of 17) | ERRORTEXT
	ARexxGuide | Functions reference | ARexx control (7 of 17) | DIGITS
	ARexxGuide | Functions reference | ARexx control (8 of 17) | FORM
	ARexxGuide | Functions reference | ARexx control (9 of 17) | FUZZ
	ARexxGuide | Functions reference | ARexx control (10 of 17) | GETCLIP
	ARexxGuide | Functions reference | ARexx control (11 of 17) | PRAGMA
	ARexxGuide | Functions reference | ARexx control | PRAGMA (1 of 1) | OPTIONS 
	ARexxGuide | Functions reference | ARexx control (12 of 17) | REMLIB
	ARexxGuide | Functions reference | ARexx control (13 of 17) | SETCLIP
	ARexxGuide | Functions reference | ARexx control (14 of 17) | SOURCELINE
	ARexxGuide | Functions reference | ARexx control (15 of 17) | SYMBOL
	ARexxGuide | Functions reference | ARexx control (16 of 17) | TRACE
	ARexxGuide | Functions reference | ARexx control (17 of 17) | VALUE


